Affiliation:
1. Zoophysiology, Department of Bioscience, Aarhus University, Denmark
Abstract
Animals with intermittent lung ventilation and those exposed to hypoxia and hypercapnia will experience fluctuations in the bodily O2 and CO2 stores, but the magnitude and temporal duration of these changes are not well understood amongst ectotherms. Using the changes in the respiratory exchange ratio (RER, CO2 excretion divided by O2 uptake) as a proxy for changes in bodily gas stores, we quantified time constants in response to hypoxia and hypercapnia in Cuvier’s dwarf caiman. We confirm distinct and prolonged changes in RER during and after exposure to hypoxia or hypercapnia. Gas exchange transients were evaluated in reference to predictions from a two-compartment model of CO2 exchange to quantify the effects of the levels of hypoxia and hypercapnia, duration of hypercapnia (30-300 min) and body temperature (23 vs 33°C). For hypercapnia, the transients could be adequately fitted by two-phase exponential functions and slow time constants (after 300 min hypercapnia) concurred reasonably well with modelling predictions. The slow time constants for the decays after hypercapnia were not affected by the level of hypercapnia, but they increased (especially at 23°C) with exposure time, possibly indicating a temporal and slow recruitment of tissues for CO2 storage. Elevated body temperature did not reduce the time constants in contrast to modelling predictions, however, likely reflecting similar ventilation rates in transients at 23 and 33°C. Our study reveals that attainment of steady state for gas exchange requires considerable time and this has important implications for designing experimental protocols when studying ventilatory control and conducting respirometry.
Funder
Danish Natural Science Research Council
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Reference43 articles.
1. Control and co-ordination of gas exchange in bimodal breathers;Boutilier,1990
2. Unsteady-state gas exchange and storage in diving marine mammals: the harbor porpoise and gray seal;Boutilier;Am. J. Physiol. Regul. Integr. Comp. Physiol.,2001
3. Gas exchange and transport during intermittent breathing in chelonian reptiles;Burggren;J. Exp. Biol.,1979
4. Oxygen and carbon dioxide gas stores of the body;Cherniack;Physiol. Rev.,1970
5. Serial changes in CO2 storage in tissues;Cherniack;Respir. Physiol.,1972
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献