The mechanics of sound production inPanacanthus pallicornis(Orthoptera: Tettigoniidae: Conocephalinae): the stridulatory motor patterns

Author:

Montealegre-Z Fernando1,Mason Andrew C.2

Affiliation:

1. Department of Zoology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6

2. Integrative Behaviour and Neuroscience Group, Department of Life Sciences,University of Toronto at Scarborough, 1265 Military Trail, Scarborough,Ontario, Canada, M1C 1A4

Abstract

SUMMARYTo examine whether sound production in katydids relies on an escapement mechanism similar to that of crickets we investigated the functional anatomy and mechanical properties of the stridulatory apparatus in the katydid Panacanthus pallicornis. Males of this species produce sustained pulses with a sharp low frequency peak of ∼5 kHz and a broad band spectrum between 15 and 25 kHz. Simultaneous recordings of movement and sound indicate that the entire stridulatory file is used for sound production and there is nearly a 1:1 correspondence between the number of cycles in a song and the number of teeth on the file. There is an overall tendency for both the spacing of teeth to increase along the file and the velocity of wing closure to increase as the scraper traverses the file. There is considerable variation,however, in the evenness of tooth spacing and in the instantaneous velocity of wing closure during sound production. The production of sustained pulses appears to depend on resonance in the right tegmen, with the left tegmen acting primarily as a damping element. This resonance is not strongly coupled to the scraper and, unlike crickets, the timing of file-scraper interactions,and therefore the phasing of energy input to wing oscillations, is variable. Similarly, the quality of the sound spectrum varies over the course of a single stridulatory wing-stroke. Based on measurements of tooth spacing on the stridulatory file and cycle-by-cycle frequency of sound output, we predicted the velocity of wing movement that would provide consistent phasing of file-scraper interactions with respect to sound-radiating wing oscillations and compared this with measurements of wing velocity. Acceleration of wing velocity during stridulation results in a closer match to the velocity required for optimal phasing during a portion of the call, and this corresponds with higher amplitudes of radiated sound and the excitation of higher order modes of vibration (evident as distinct harmonic peaks in spectrograms). Our results suggest that in katydid stridulation, the movement of the scraper along the file is not regulated by an escapement mechanism as it is in crickets. Instead, katydids that produce pure-tone songs sweep their wings over a range of velocities, within which some portion matches file tooth spacing to give optimal phasing of energy input to excite a resonance in the right tegmen.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

1. Anstee, J. H. (1971). The stridulatory apparatus of two species of tettigoniid. Tissue Cell3, 71-76.

2. Arya, P. A. (1998). Introduction to Classical Mechanics. Upper Saddle River, NJ, USA: Prentice Hall.

3. Bailey, W. J. (1970). The mechanisms of stridulation in bush crickets (Tettigonoidea, Orthoptera). J. Exp. Biol.52,495-505.

4. Bailey, W. J. and Broughton, W. B. (1970). The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera). II. Conditions for resonance in the tegminal generator. J. Exp. Biol.52,507-517.

5. Bennet-Clark, H. C. (1987). The tuned singing burrow of mole crickets. J. Exp. Biol.128,383-409.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3