Oscillation of APC/C activity during cell cycle arrest promotes centrosome amplification

Author:

Prosser Suzanna L.,Samant Mugdha D.,Baxter Joanne E.,Morrison Ciaran G.,Fry Andrew M.

Abstract

Centrosome duplication is licensed by the disengagement, or ‘uncoupling’, of centrioles during late mitosis. However, arrest of cells in G2 can trigger premature centriole disengagement. Here, we show that premature disengagement results from untimely activation of the APC/C leading to securin degradation and release of active separase. APC/C activation during G2 arrest is dependent on Plk1-mediated degradation of the APC/C inhibitor, Emi1, but Plk1 also has a second APC/C-independent role in promoting disengagement. Importantly, APC/C and Plk1 activity also stimulate centriole disengagement in response to hydroxyurea or DNA damage-induced cell cycle arrest and this leads to centrosome amplification. However, the re-duplication of disengaged centrioles is dependent on Cdk2 activity and Cdk2 activation coincides with a subsequent inactivation of the APC/C and re-accumulation of cyclin A. Release from these arrests leads to mitotic entry but, due to the presence of disengaged and/or amplified centrosomes, formation of abnormal mitotic spindles that lead to chromosome missegregation. Thus, oscillation of APC/C activity during cell cycle arrest promotes both centrosome amplification and genome instability.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3