Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis

Author:

Zhang Shanshan12,Liu Wenjing1,Yang Yeming1,Sun Kuanxiang12,Li Shujin1,Xu Huijuan2,Yang Mu2,Zhang Lin12,Zhu Xianjun1234ORCID

Affiliation:

1. Institute of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China

2. Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Hospital, Chengdu, Sichuan, China

3. Department of Ophthalmology, Shangqiu First People's Hospital, Shangqiu, Henan, China

4. Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China

Abstract

Phosphatidylserine (PS) is PS asymmetry in the eukaryotic cell membrane is maintained by a group of proteins belonging to the P4-ATPase family, namely, PS flippases. The folding and transporting of P4-ATPases to their cellular destination requires a beta-subunit member of the TMEM30 protein family. Loss of Tmem30a has been shown to cause multiple disease conditions. However, its roles in vascular development have not been elucidated. Here, we show that TMEM30A plays critical roles in retinal vascular angiogenesis, which is a fundamental process in vascular development. Our data indicated that knockdown of TMEM30A in primary human retinal endothelial cells led to reduced tube formation. In mice, endothelial cell (EC)-specific deletion of Tmem30a led to retarded retinal vascular development with a hyperpruned vascular network as well as blunted-end, aneurysm-like tip endothelial cells (ECs) with fewer filopodia at the vascular front and reduced number of tip cells. Deletion of Tmem30a also impaired vessel barrier integrity. Mechanistically, deletion of TMEM30A caused reduced EC proliferation by inhibiting VEGF-induced signaling. Our findings reveal essential roles of TMEM30A in angiogenesis, and providing a potential therapeutic target.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Sichuan Province

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3