Distinct functions of a cGMP-dependent protein kinase in nerve terminal growth and synaptic vesicle cycling

Author:

Dason Jeffrey S.12ORCID,Allen Aaron M.13,Vasquez Oscar E.4,Sokolowski Marla B.145

Affiliation:

1. Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada

2. Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada

3. Present Address: Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR Oxford, UK

4. Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada

5. Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, M5G 1M1, Canada

Abstract

Sustained neurotransmission requires the tight coupling of synaptic vesicle (SV) exocytosis and endocytosis. The mechanisms underlying this coupling are poorly understood. We tested the hypothesis that a cGMP-dependent protein kinase (PKG), encoded by the foraging (for) gene in Drosophila melanogaster, is critical for this process using a for null mutant, genomic rescues, and tissue specific rescues. We uncoupled FOR's exocytic and endocytic functions in neurotransmission using a temperature-sensitive shibire mutant in conjunction with fluorescein-assisted light inactivation of FOR. We discovered a dual role for presynaptic FOR, where FOR inhibits SV exocytosis during low frequency stimulation by negatively regulating presynaptic Ca2+ levels and maintains neurotransmission during high frequency stimulation by facilitating SV endocytosis. Additionally, glial FOR negatively regulated nerve terminal growth through TGF-β signaling and this developmental effect was independent from FOR's effects on neurotransmission. Overall, FOR plays a critical role in coupling SV exocytosis and endocytosis, thereby balancing these two components to maintain sustained neurotransmission.

Funder

Natural Sciences and Engineering Research Council of Canada

Heart and Stroke Foundation of Canada

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3