Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions

Author:

Sato Katsufumi12,Mitani Yoko2,Cameron Michael F.34,Siniff Donald B.3,Naito Yasuhiko12

Affiliation:

1. National Institute of Polar Research, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan

2. Graduate University for Advanced Studies, 1-9-10 Kaga, Itabashi, Tokyo 173-8515, Japan

3. Department of Ecology, Evolution and Behavior, University of Minnesota,100 Ecology, St Paul, Minnesota 55455 USA

4. Present address: National Marine Mammal Laboratory/Alaska Fisheries Science Center, NOAA, 7600 Sand Point Way NE, Seattle, Washington 98115, USA

Abstract

SUMMARYAquatic animals use a variety of strategies to reduce the energetic cost of locomotion. Efficient locomotion is particularly important for breath-holding divers because high levels of exercise may quickly deplete oxygen reserves,leading to the termination of a dive. We investigated the swimming behavior of eight adult Weddell seals, which are proficient divers, in McMurdo Sound,Antarctica. A newly developed data logger was attached to free-ranging females at their own breeding sites to record swimming speed, depth, two-dimensional accelerations (stroke frequency and body angle) and temperature. All seals conducted multiple deep dives (the mean dive depth range for each animal was 223.3±66.5–297.9±164.7 m). Prolonged gliding while descending was observed with thinner females (N=5 seals). But the fatter females (N=3 seals) exhibited only swim-and-glide swimming,characterized by intermittent stroking and fluctuating swim speed, throughout their descent and ascent. The body angles of four of the seals were restricted to less than 30° by the location of breathing holes in the ice and the slope of local bathymetric features. Of these four, the three fatter seals adopted the stroke-and-glide method while the other thinner seal descended with prolonged periods of gliding. Prolonged gliding seems to be a more efficient method for locomotion because the surface time between dives of gliding seals was significantly less than that of stroking animals, despite their same stroke frequencies.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3