RXRα acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells

Author:

Lin Xiao-Feng1,Zhao Bi-Xing1,Chen Hang-Zhi1,Ye Xiao-Feng1,Yang Chao-Yi1,Zhou Hai-Ying1,Zhang Ming-Qing1,Lin Sheng-Cai1,Wu Qiao1

Affiliation:

1. Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian Province, 361005, China

Abstract

Retinoid X receptor (RXR) plays a crucial role in the cross talk between retinoid receptors and other hormone receptors including the orphan receptor TR3, forming different heterodimers that transduce diverse steroid/thyroid hormone signaling. Here we show that RXRα exhibits nucleocytoplasmic shuttling in MGC80-3 gastric cancer cells and that RXRα shuttling is energy-dependent through a nuclear pore complex (NPC)-mediated pathway for its import and an intact DNA binding domain-mediated pathway for its export. In the presence of its ligand 9-cis retinoic acid, RXRα was almost exclusively located in the cytoplasm. More importantly, we also show that RXRα acts as a carrier to assist translocation of TR3, which plays an important role in apoptosis. Both RXRα and TR3 colocalized in the nucleus; however, upon stimulation by 9-cis retinoic acid they cotranslocated to the cytoplasm and then localized in the mitochondria. TR3 export depends on RXRα, as in living cells GFP-TR3 alone did not result in export from the nucleus even in the presence of 9-cis retinoic acid, whereas GFP-TR3 cotransfected with RXRα was exported out of the nucleus in response to 9-cis retinoic acid. Moreover, specific reduction of RXRα levels caused by anti-sense RXRα abolished TR3 nuclear export. In contrast, specific knockdown of TR3 by antisense-TR3 or TR3-siRNA did not affect RXRα shuttling. These results indicate that RXRα is responsible for TR3 nucleocytoplasmic translocation, which is facilitated by the RXRα ligand 9-cis retinoic acid. In addition, mitochondrial TR3, but not RXRα, was critical for apoptosis, as TR3 mutants that were distributed in the mitochondria induced apoptosis in the presence or absence of 9-cis retinoic acid. These data reveal a novel aspect of RXRα function, in which it acts as a carrier for nucleocytoplasmic translocation of orphan receptors.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3