Physiological profiles associated with ceasing growth of unfertilized eggs produced by unmated queens in the subterranean termite Reticulitermes chinensis

Author:

Li Ganghua12,Liu Long1,Sun Pengdong1,Wu Yao1,Lei Chaoliang1,Chen Xiongwen2,Huang Qiuying1ORCID

Affiliation:

1. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China

2. College of Life Science, Hubei Normal University, Huangshi, Hubei 435002, China

Abstract

ABSTRACT In Reticulitermes chinensis, a close relative of R.speratus with asexual queen succession, unfertilized eggs can be produced but do not hatch as larvae. To explain this phenomenon, we analyzed the physiological differences between unfertilized eggs/unmated queens and fertilized eggs/mated queens. Fertilized eggs had significantly lower quantities of five amino acids (Cys, Met, Ile, Leu and Tyr), Ca, protein and cholesterol during development. The higher levels of four trace elements (Na, K, Zn and Fe) in fertilized eggs and their lower levels in mated queens indicated that mated queens might transfer these trace elements to fertilized eggs to aid development. The higher levels of Mn, triglycerides and serotonin in mated queens and higher levels of Mn and glucose in fertilized eggs suggested that these substances are very important for normal ovarian and embryonic growth. The different expression of three reproductive genes (vtg 1, rab 11 and JHE 1) suggested that they might be involved in the regulation of ovarian and embryonic growth. Overall, changes in these physiological indices may substantially affect ovarian and embryonic growth and inhibit development of unfertilized eggs in R. chinensis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3