Adhesion of red blood cells to charged interfaces between immiscible liquids. A new method

Author:

Gingell D.,Todd I.

Abstract

We have devised a method of making a flat oil/water interface which remains flat on inversion. Cell adhesion to the interface can be observed microscopically. Glutaraldehyde-fixed human red blood cells adhere to the interface between physiological saline and hexadecane containing surface-active behenic acid at pH values below about 7-5. At high pH values, cells are prevented from adhering due to dissociation of the carboxyl groups of behenic acid oriented in the interface. The negative red cells are driven away electrostatically. Adherent and non-adherent cells remain on the aqueous side of the interface and do not appreciably deform it when adherent. Cells are electrostatically attracted to a similar interface containing positively charged octadecyltrimethylammonium ions. Cells also adhere to an interface containing octadecanol, which carries no charge. Underlying both electrostatic repulsion and attraction between red cells and oil/water interfaces is an attractive force which may be of electrodynamic (van der Waals) origin.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameters affecting adsorption of microorganisms on activated charcoal cloth;Journal of Chemical Technology & Biotechnology;2007-04-24

2. Chapter 11. Molecular interactions of biomembranes;Annual Reports Section "C" (Physical Chemistry);1999

3. The electrostatic interaction between a small colloidal particle and a charged interface;Colloids and Surfaces A: Physicochemical and Engineering Aspects;1996-01

4. The mechanisms of leukocyte removal by filtration;Transfusion Medicine Reviews;1995-04

5. Adhesion of leucocytes to microscope slides as influenced by electrostatic interaction;Biomaterials;1995-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3