Retention and stimulus-dependent recycling of dense core vesicle content in neuroendocrine cells

Author:

Bauer Roslyn A.1,Overlease Ruth L.1,Lieber Janet L.1,Angleson Joseph K.1

Affiliation:

1. Department of Biological Sciences, University of Denver, Denver, CO 80208, USA

Abstract

We have used fluorescence imaging of individual exocytic events in combination with immunogold electron microscopy and FM1-43 photoconversion to study the stimulus-dependent recycling of dense core vesicle content in isolated rat pituitary lactotrophs. Secretory stimulation with high external [K+] resulted in 100 exocytic sites per cell that were labeled by extracellular antibodies against the peptide hormone prolactin. Morphological analysis demonstrated that the prolactin was retained and internalized in intact dense cores. Vesicles containing non-secreted, internalized prolactin did not colocalize with DiI-LDL that had been chased into lysosomes but did transiently colocalize with internalized transferrin. The recycling vesicles also trafficked through a syntaxin 6-positive compartment but not the TGN38-positive trans-Golgi. Recycling vesicles, which returned to the cell surface in a slow basal manner, could also be stimulated to undergo exocytosis with a high release probability during subsequent exocytic stimulation with external K+. These studies suggest a functional role for recycling vesicles that retain prolactin.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3