Affiliation:
1. Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2. Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Rue du Bugnon 25, CH-1011 Lausanne, Switzerland
Abstract
Pygopus has been discovered as a fundamental Wnt signaling component in Drosophila. The mouse genome encodes two Pygopus homologs, Pygo1 and Pygo2. They serve as context-dependent β-catenin coactivators, with Pygo2 playing the more important role. All Pygo proteins share a highly conserved plant homology domain (PHD) that allows them to bind di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). Despite the structural conservation of this domain, the relevance of histone binding for the role of Pygo2 as a Wnt signaling component and as a reader of chromatin modifications remains speculative. Here we generate a knock-in mouse line, homozygous for a Pygo2 mutant defective in chromatin binding. We show that even in the absence of the potentially redundant Pygo1, Pygo2 does not require the H3K4me2/3 binding activity to sustain its function during mouse development. Indeed, during tissue homeostasis, Wnt/β-catenin-dependent transcription is largely unaffected. However, the Pygo2-chromatin interaction is relevant in testes, where, importantly, Pygo2 binds in vivo to the chromatin in a PHD-dependent manner. Its presence on regulatory regions does not affect the transcription of nearby genes; rather, it is important for the recruitment of the histone acetyltransferase Gcn5 to chromatin, consistent with a testis-specific and Wnt-unrelated role for Pygo2 as a chromatin remodeler.
Publisher
The Company of Biologists
Subject
Developmental Biology,Molecular Biology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献