Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins,phospholipids and their fatty acid compositions

Author:

Kraffe Edouard12,Marty Yanic1,Guderley Helga2

Affiliation:

1. Unité mixte CNRS 6521, Université de Bretagne Occidentale,C.S. 93837, 29238 Brest cedex 3, France

2. Département de Biologie, Université Laval, Québec,G1K 7P4, Canada

Abstract

SUMMARY Changes in the properties of mitochondria from oxidative muscle of rainbow trout Oncorhynchus mykiss were examined during warm (5°C to 15°C) acclimation. Trout were studied shortly after the initial thermal change and after 8 weeks acclimation to 15°C. To identify potential mechanisms by which oxidative capacities change, the modifications of phospholipid composition, membrane proteins and functional capacities of red muscle mitochondria were examined. Marked functional changes of isolated muscle mitochondria during warm acclimation of rainbow trout were reflected by a host of modifications in phospholipid composition, but by few shifts in protein components. Shortly after transfer of trout from 5°C to 15°C,the maximal oxidative capacity of mitochondria measured at 15°C increased slightly, but rates at both assay temperatures (5°C and 15°C)decreased markedly after warm acclimation. The increase in capacity in short-term warm exposed trout was most pronounced when rates at 15°C were expressed relative to cytochrome a and c1 levels. Non-phosphorylating (State 4) rates of oxygen uptake increased with short-term warm exposure before returning to initial levels after warm acclimation. Cytochrome c oxidase (CCO) activity in the mitochondrial preparations decreased with warm acclimation. The thermal sensitivity of the ADP affinity was markedly modified during short-term warm exposure, when the ADP/O ratio increased, but warm acclimation returned these values to those observed initially. ADP affinity increased after warm acclimation. Changes in the mitochondrial content of cytochromes and adenine nucleotide translocase (ANT)could not explain these patterns. On the other hand, changes in the proportions of the lipid classes and in the acyl chain composition of certain phospholipid classes mirror the modifications in functional properties. Short-term exposure to 15°C decreased the ratio of diacylphosphatidylethanolamine/diacylphosphatidylcholine (diacylPE/diacylPC),whereas warm acclimation led to restructuring of fatty acids (FA) and to increases of plasmalogen forms of PE and PC. Modification of overall membrane unsaturation did not appear to be the primary aim of restructuring membrane FA during warm acclimation, as total mitochondrial phospholipids and the major phospholipid classes only showed slight shifts of their acyl composition with warm acclimation. On the other hand, natural lysophosphatidylcholine (LysoPC)showed dramatic changes in FA content, as 16:0 and 18:1n-9 doubled whereas 22:6n-3 decreased from around 50% to 32% in warm acclimated trout. Similarly,in cardiolipin (CL), the levels of 16:0 and 18:1n-7 halved while 18:2n-6 increased to over 20% of the FA with warm acclimation. Given the central role of CL in modulating the activity of CCO, F0F1-ATPase and ANT, these changes suggest that specific compositional changes in CL are important modulators of mitochondrial capacities. The many structural changes in membrane lipids contrast with the limited modifications of the membrane protein components examined and support the concept of lipid structure modulating mitochondrial capacities.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3