Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells.

Author:

Moffett D F1,Koch A1

Affiliation:

1. Laboratory of Molecular Physiology, Washington State University, Pullman 99164-4236.

Abstract

In the midgut of larval lepidopteran insects, goblet cells are believed to secrete K+; the proposed mechanism involves an electrogenic K+/nH+ (n > 1) antiporter coupled to primary active transport of H+ by a vacuolar-type ATPase. Goblet cells have a prominent apical cavity isolated from the gut lumen by a valve-like structure. Using H(+)- and K(+)-selective microelectrodes, we showed that electrochemical gradients of H+ and K+ across the apical membrane and valve are consistent with active secretion of both ions into the cavity and that the transapical H+ electrochemical gradient, but not the transapical pH gradient, is competent to drive K+ secretion by a K+/nH+ antiporter. We used 10 mmol l-1 tetramethylammonium ion (TMA+) as a marker for the ability of small cations to pass from the gut lumen through the valve to the goblet cavity, exploiting the high TMA+ sensitivity of 'K(+)-sensitive' microelectrodes. These studies showed that more than half of the cavities were inaccessible to TMA+. For those cavities that were accessible to TMA+, both entry and exit rates were too slow to be consistent with direct entry through the valves. One or more mixing compartments appear to lie between the lumen bathing solution and the goblet cavity. The lateral intercellular spaces and goblet cell cytoplasm are the most likely compartments. The results are not consistent with free diffusion of ions in a macroscopic valve passage; mechanisms that would allow K+ secreted into the goblet cavity to exit to the gut lumen, while preventing H+ from exiting, remain unclear.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3