A PLANT BIOCHEMIST'S VIEW OF H+-ATPases AND ATP SYNTHASES.

Author:

Mccarty RE

Abstract

My twenty-five year fascination with membrane ATPases grew out of my experiences in the laboratories of André Jagendorf and Efraim Racker. André introduced me to photosynthetic phosphorylation and Ef, to whose memory this article is dedicated, convinced me that ATPases had much to do with ATP synthesis. Astounding progress has been made in the H+-ATPase field in just two decades. By the early 1970s, it was generally recognized that oxidative and photosynthetic ATP synthesis were catalyzed by membrane enzymes that could act as H+-ATPases and that the common intermediate between electron transport and phosphorylation is the electrochemical proton gradient. At that time, it had been shown that a cation-stimulated ATPase activity was associated with plasma membrane preparations from plant roots. The endomembrane or vacuolar ATPases were unknown. The application of improved biochemical methods for membrane isolation and purification, as well as membrane protein reconstitutions, led rapidly to the conclusion that there are three major classes of membrane H+-ATPases, P, V and F. P-ATPases, which will not be considered further in this article, are phosphorylated during their catalytic cycle and have a much simpler polypeptide composition than V- or F-ATPases. The plasma membrane H+-ATPase of plant, yeasts and fungal cells is one example of this class of enzymes (see Pedersen and Carafoli, 1987, for a comparison of plasma membrane ATPases). Biochemical and gene sequencing analysis have revealed that V- and F-ATPases resemble each other structurally, but are distinct in function and origin. The 'V' stands for vacuolar and the 'F' for F1Fo. F1 was the first factor isolated from bovine heart mitochondria shown to be required for oxidative phosphorylation. Fo was so named because it is a factor that conferred oligomycin sensitivity to soluble F1. Other F-ATPases are often named to indicate their sources. For example, chloroplast F1 is denoted CF1 (see Racker, 1965, for early work on F1). Recent successes in reconstitution of vacuolar ATPase have led to a V1Vo nomenclature for this enzyme as well. The term 'ATP synthase' is now in general use to describe F-ATPases. This term emphasizes the facts that although F-ATPases function to synthesize ATP, they do not catalyze, normally, ATP hydrolysis linked to proton flux. In contrast, V-ATPases are very unlikely to operate as ATP synthases. Thus, F-ATPases are proton gradient consumers, whereas V-ATPases generate proton gradients at the expense of hydrolysis. In this brief review, I will compare the structures of F- and V-ATPases. Also, I give some insight into the mechanisms that help prevent wasteful ATP hydrolysis by the chloroplast ATP synthase (CF1Fo).

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3