Cholinergic Motor Control of Sea Urchin Tube Feet: Evidence for Chemical Transmission without Synapses

Author:

FLOREY E.1,CAHILL M. A.2

Affiliation:

1. Fakultät für Biologie, Universität Konstanz, D-7750 Konstanz, Federal Republic of Germany

2. Friday Harbor Laboratories of the University of Washington, Friday Harbor, Washington 98250, U.S.A.

Abstract

Isolated tube feet of Strongylocentrotus franciscanus contract briefly when the outer epithelium is touched. Similar twitch-like contractions can be induced by electrical stimulation of the outer surface of the tube foot. These responses appear to be chemically mediated. The following evidence indicates that the transmitter substance may be acetylcholine (ACh): ACh causes muscle contraction. This effect and that of electrical stimuli is potentiated by anticholinesterase agents and is antagonized by cholinergic blocking agents. Anaesthesia with chloralhydrate or chloretone abolishes responsiveness to mechanical or electrical stimulation but not to ACh. Desensitization with carbachol prevents responses to ACh and to mechanical or electrical stimulation. There are no neuromuscular synapses and no axons can be detected which cross the connective tissue layer which separates the muscle fibres from the subepithelial nerve plexus. The latter is known to contain conspicuous amounts of ACh; nerve terminals containing clear vesicles invest the outer surface of the connective tissue layer. All evidence indicates that chemical transmission involves diffusion of ACh (released from activated nerve terminals) across this connective tissue layer which is around 5 μm thick in fully extended tube feet but may have a thickness of 20 or even 25 μm in less extended ones. Calculations based on equations describing transmitter diffusion prove the feasibility of such a mechanism. Note:

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3