Endurance exercise resistance to lipotoxic cardiomyopathy is associated with cardiac NAD+/dSIR2/PGC-1α pathway activation in old Drosophila

Author:

Wen Deng-Tai12ORCID,Zheng Lan1,Li Jin-xiu1,Cheng Dan1,Liu Yang1,Lu Kai1,Hou Wen-qi1

Affiliation:

1. Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, Hunan Province, China

2. Department of Sports Science, Ludong University, Yantai 264025, Shandong Province, China

Abstract

ABSTRACT Lipotoxic cardiomyopathy is caused by excessive lipid accumulation in myocardial cells and it is a form of cardiac dysfunction. Cardiac PGC-1α overexpression prevents lipotoxic cardiomyopathy induced by a high-fat diet (HFD). The level of NAD+ and Sir2 expression upregulate the transcriptional activity of PGC-1α. Exercise improves cardiac NAD+ level and PGC-1α activity. However, the relationship between exercise, NAD+/dSIR2/PGC-1α pathway and lipotoxic cardiomyopathy remains unknown. In this study, flies were fed a HFD and exercised. The heart dSir2 gene was specifically expressed or knocked down by UAS/hand-Gal4 system. The results showed that either a HFD or dSir2 knockdown remarkably increased cardiac TG level and dFAS expression, reduced heart fractional shortening and diastolic diameter, increased arrhythmia index, and decreased heart NAD+ level, dSIR2 protein, dSir2 and PGC-1α expression levels. Contrarily, either exercise or dSir2 overexpression remarkably reduced heart TG level, dFAS expression and arrhythmia index, and notably increased heart fractional shortening, diastolic diameter, NAD+ level, dSIR2 level, and heart dSir2 and PGC-1α expression. Therefore, we declared that exercise training could improve lipotoxic cardiomyopathy induced by a HFD or cardiac dSir2 knockdown in old Drosophila. The NAD+/dSIR2/PGC-1α pathway activation was an important molecular mechanism of exercise resistance against lipotoxic cardiomyopathy.

Funder

National Natural Science Foundation of China

Ministry of Education

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3