Distinct roles for prominin-1 and photoreceptor cadherin in outer segment disc morphogenesis in CRISPR-altered X. laevis

Author:

Carr Brittany J.1ORCID,Stanar Paloma1,Moritz Orson L.1ORCID

Affiliation:

1. Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, 330-2550 Willow St., Vancouver, British Columbia, Canada, V5Z 3N9, Canada

Abstract

Mutations in prominin-1 (prom1) and photoreceptor cadherin (cdhr1) are associated with inherited retinal degenerative disorders but their functions remain unknown. We used CRISPR-Cas9 to generate prom1-, cdhr1-, and prom1+cdhr1-null X. laevis and then documented the effects of these mutations on photoreceptor structure and function. Prom1-null mutations resulted in severely dysmorphic photoreceptors comprised of overgrown and disorganized disc membranes. Cone outer segments were more severely affected than rods and had an impaired ERG response. Cdhr1-null photoreceptors did not appear grossly dysmorphic, but ultrastructural analysis revealed that some disc membranes were overgrown or oriented vertically within the plasma membrane. Double-null mutants did not differ significantly from prom1-null mutants. Our results indicate that neither prom1 nor cdhr1 are necessary for outer segment disc membrane evagination or the fusion event that controls disc sealing. Rather, they are necessary for the higher-order organization of the outer segment. Prom1 may align and reinforce interactions between nascent disc leading edges, a function more critical in cones for structural support. Cdhr1 may secure discs in a horizontal orientation prior to fusion and regulate cone lamellae size.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Michael Smith Foundation for Health Research

Edwina and Paul Heller Memorial Fund

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3