Mesenchymal influences on epithelial differentiation in developing systems

Author:

SHARPE P. M.1,FERGUSON M. W. J.1

Affiliation:

1. Animal & Human Reproduction Development & Growth Research Group, Department of Cell & Structural Biology, University of Manchester, Coupland 3 Building, Manchester M13 9PL, England

Abstract

Summary Mesenchyme tissue: cells, matrix and soluble factors, influence the morphogenesis, proliferation and differentiation of a variety of embryonic epithelia, e.g. in the tooth, skin, mammary and salivary glands. Mesenchyme derivatives also ‘maintain’ adult epithelia, e.g. the local proliferation rate and cytokeratin composition of oral mucosa. Abnormalities in such epithelial–mesenchymal interactions lead to a variety of pathologies such as premalignant lesions, e.g. leukoplakia, tumours and psoriasis, whilst therapeutic manipulation of such interactions can prevent the exfoliation of dental implants. In all of these systems it is critical to understand, at the cellular and molecular levels, how the mesenchyme signals to the epithelium and how the latter processes and responds to such signals. We have investigated such questions using the developing embryonic palate both as a model system and as an important organ: failure of mesenchymal signalling leads to the common and distressing birth defect of cleft palate. Bilateral palatal shelves arise from the maxillary processes of embryonic day 11 (E11) mice, grow initially vertically down the sides of the tongue, elevate on E13.8 to a horizontal position above the dorsum of the tongue and fuse with each other in the midline on E14. The medial edge epithelia of each shelf fuse with each other to form a midline epithelial seam, suprabasal cells die, and the basal (stem) cells synthesize extracellular matrix molecules and turn into mesenchymal cells. Simultaneously the oral epithelia differentiate into stratified squamous cells and the nasal epithelia into pseudostratified ciliated columnar cells. Oral, medial and nasal epithelial differentiation is specified by the underlying mesenchyme in vivo and in vitro. Signalling involves a bifurcating action of a combination of soluble growth factors e.g. TGF-α, TGF-β, PDGF and FGF on palatal epithelia and mesenchyme. These factors stimulate the synthesis of specific extracellular matrix molecules by palate mesenchyme cells, and the appearance of receptors for such molecules on epithelial cells. In this way, a combination of mesenchymal soluble factors and extracellular matrix molecules direct palatal epithelial differentiation. These signals act on epithelial basal (stem) cells, causing them to synthesize unique proteins, which may direct subsequent differentiation of daughter cells. In the most extreme example, namely the medial edge epithelia, these signals result in the basal epithelial cells transforming into mesenchymal cells, thus demonstrating that they are indeed multipotential stem cells.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3