In ovo thyroxine exposure alters later UVS cone loss in juvenile rainbow trout

Author:

Raine Jason C.1,Coffin Allison B.1,Hawryshyn Craig W.12

Affiliation:

1. Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada

2. Center for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada

Abstract

SUMMARY Thyroid hormones (THs) play a vital role in vertebrate neural development, and, together with the beta isoform of the thyroid hormone receptor (TRβ), the development and differentiation of cone photoreceptors in the vertebrate retina. Rainbow trout undergo a natural process of cone cell degeneration during development and this change in photoreceptor distribution is regulated by thyroxine (T4; a thyroid hormone). In an effort to further understand the role of T4 in photoreceptor ontogeny and later developmental changes in photoreceptor subtype distribution, the influence of enhanced in ovo T4 content on the onset of opsin expression and cone development was examined. Juvenile trout reared from the initial in ovo-treated embryos were challenged with exogenous T4 at the parr stage of development to determine if altered embryonic exposure to yolk THs would affect later T4-induced short-wavelength-sensitive (SWS1) opsin transcript downregulation and ultraviolet-sensitive (UVS) cone loss. In ovo TH manipulation led to upregulation of both SWS1 and long-wavelength-sensitive (LWS) opsin transcripts in the pre-hatch rainbow trout retina and to changes in the relative expression of TRβ. After 7 days of exposure to T4, juveniles that were also treated with T4 in ovo had greatly reduced SWS1 expression levels and premature loss of UVS cones relative to T4-treated juveniles raised from untreated eggs. These results suggest that changes in egg TH levels can have significant consequences much later in development, particularly in the retina.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3