High glucose induces Nox4 expression and podocyte apoptosis through the Smad3/ezrin/PKA pathway

Author:

Guo Wanxu1,Gao Hang2,Pan Wei1,Yu Panapn1ORCID,Che Guanghua1ORCID

Affiliation:

1. Department of Pediatrics, Second Hospital, Jilin University, Changchun, 130041, China

2. The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China

Abstract

ABSTRACT Podocytes are the major target in proteinuric kidney diseases such as diabetic nephropathy. The underlying molecular mechanisms by which high glucose (HG) results in podocyte damage remain unclear. This study investigated the regulatory role of Smad3, ezrin, and protein kinase A (PKA) in NADPH oxidase (Nox4) expression, reactive oxidative species (ROS) production, and apoptosis in HG-treated podocytes. A human podocyte cell line was cultured and differentiated, then treated with 30 mM HG. Apoptosis and intracellular ROS levels were assessed using TUNEL and DCF assays, respectively. Expressions of Nox4, phospho-Smad3Ser423/425, phospho-PKAThr197, and phospho-ezrinThr567 were evaluated using western blotting. ELISA was used to quantify intracellular cAMP concentration and PKA activity. Knockdown assay was used to inhibit the expressions of Smad3, Nox4, and ezrin by lentiviral shRNA. In HG-treated podocytes, the level of phospho-Smad3Ser423/425 and phospho-ezrinThr567 was increased significantly, which was accompanied by the reduction of cAMP and phospho-PKAThr197. HG-induced apoptosis was significantly prevented by the Smad3-inhibitor SIS3 or shRNA-Smad3. In podocytes expressing shRNA-ezrin or shRNA-Nox4, apoptosis was remarkably mitigated following HG treatment. HG-induced upregulation of phospho-ezrinThr567 and downregulation of phospho-PKAThr197 was significantly prevented by SIS3, shRNA-ezrin or shRNA-Smad3. Forskolin, a PKA activator, significantly inhibited HG-mediated upregulation of Nox4 expression, ROS generation, and apoptosis. Additionally, an increase in the ROS level was prohibited in HG-treated podocytes with the knockdown of Nox4, Smad3, or ezrin. Taken together, our findings provided evidence that Smad3-mediated ezrin activation upregulates Nox4 expression and ROS production, by suppressing PKA activity, which may at least in part contribute to HG-induced podocyte apoptosis.

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3