Neurogenesis in the insect enteric nervous system: generation of premigratory neurons from an epithelial placode

Author:

Copenhaver P.F.1,Taghert P.H.1

Affiliation:

1. Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO 63110.

Abstract

The enteric plexus (EP) is a major division of the enteric nervous system (ENS) in the moth Manduca sexta and contains a dispersed population of about 360 bipolar neurons, the EP cells. Previously we showed that embryonic EP cells achieve their mature distributions by extensive migration along the gut surface and then display position-specific phenotypes. We now demonstrate that the entire EP cell population is generated from an ectodermal placode that invaginates from the embryonic foregut. Individual EP cells become postmitotic just as they leave the epithelium, but their terminal differentiation is subsequently delayed until after their migratory dispersal. Clonal analysis by injection of lineage-tracing dyes has shown that the EP cell population is derived from a large number of placodal cells, each of which contributes a limited number of neurons to the ENS. Placodally derived clones produce neurons exclusively, while clones arising from cells adjacent to the placode are incorporated into the gut epithelium. These results indicate that neurogenesis in the insect ENS involves a developmental strategy that is distinct from that seen in the insect CNS and which resembles the generation of certain cell classes in the vertebrate nervous system.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3