Distinct hyperactive RAS/MAPK alleles converge on common GABAergic interneuron core programs

Author:

Knowles Sara J.1ORCID,Stafford April M.2ORCID,Zaman Tariq2ORCID,Angara Kartik2ORCID,Williams Michael R.23,Newbern Jason M.1ORCID,Vogt Daniel23ORCID

Affiliation:

1. School of Life Sciences, Arizona State University 1 , Tempe, AZ 85287 , USA

2. Michigan State University 2 Department of Pediatrics and Human Development , , Grand Rapids, MI 49503 , USA

3. Michigan State University 3 Neuroscience Program , , East Lansing, MI 48825 , USA

Abstract

ABSTRACT RAS/MAPK gene dysfunction underlies various cancers and neurocognitive disorders. Although the roles of RAS/MAPK genes have been well studied in cancer, less is known about their function during neurodevelopment. There are many genes that work in concert to regulate RAS/MAPK signaling, suggesting that if common brain phenotypes could be discovered they could have a broad impact on the many other disorders caused by distinct RAS/MAPK genes. We assessed the cellular and molecular consequences of hyperactivating the RAS/MAPK pathway using two distinct genes in a cell type previously implicated in RAS/MAPK-mediated cognitive changes, cortical GABAergic interneurons. We uncovered some GABAergic core programs that are commonly altered in each of the mutants. Notably, hyperactive RAS/MAPK mutants bias developing cortical interneurons towards those that are somatostatin positive. The increase in somatostatin-positive interneurons could also be prevented by pharmacological inhibition of the core RAS/MAPK signaling pathway. Overall, these findings present new insights into how different RAS/MAPK mutations can converge on GABAergic interneurons, which may be important for other RAS/MAPK genes and related disorders.

Funder

Spectrum Health Foundation

Michigan State University

Autism Research Institute

Achievement Rewards for College Scientists Foundation

National Institutes of Health

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3