Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments

Author:

Bühlmann Cornelia1,Cheng Ken2,Wehner Rüdiger1

Affiliation:

1. Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland

2. Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia

Abstract

SUMMARY Two species of desert ants – the North African Cataglyphis fortis and the central Australian Melophorus bagoti – differ markedly in the visual complexity of their natural habitats: featureless salt pans and cluttered, steppe-like terrain, respectively. Here we ask whether the two species differ in their navigational repertoires, in particular, whether in homing they place different emphasis on their vector-based and landmark-based routines. In trying to answer this question, we applied the same experimental paradigms to individual foragers of either species on either continent: training and/or testing with and/or without artificial landmark arrays. We found that the open-terrain species C. fortis runs off its (path integration) home vector much more readily even in unfamiliar landmark settings than the cluttered-terrain species M. bagoti. These data support the hypothesis that C. fortis has a higher propensity to rely on vector-mediated navigation, whereas in the same experimental situations M. bagoti more easily switches to landmark-guided behaviour. In the actual navigational performances, such species-specific propensities are most likely shaped by environment-dependent individual experiences.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3