Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs

Author:

SOROKIN S. P.1

Affiliation:

1. Department of Anatomy, Harvard Medical School Boston, Massachusetts 02115, U.S.A.

Abstract

This study presents reconstructions of the processes of centriolar formation and ciliogenesis based on evidence found in electron micrographs of tissues and organ cultures obtained chiefly from the lungs of foetal rats. A few observations on living cultures supplement the major findings. In this material, centrioles are generated by two pathways. Those centrioles that are destined to participate in forming the achromatic figure, or to sprout transitory, rudimentary (primary) cilia, arise directly off the walls of pre-existing centrioles. In pulmonary cells of all types this direct pathway operates during interphase. The daughter centrioles are first recognizable as annular structures (procentrioles) which lengthen into cylinders through acropetal deposition of osmiophilic material in the procentriolar walls. Triplet fibres develop in these walls from singlet and doublet fibres that first appear near the procentriolar bases and thereafter extend apically. When little more than half grown, the daughter centrioles are released into the cytoplasm, where they complete their maturation. A parent centriole usually produces one daughter at a time. Exceptionally, up to 8 have been observed to develop simultaneously about 1 parent centriole. Primary cilia arise from directly produced centrioles in differentiating pulmonary cells of all types throughout the foetal period. In the bronchial epithelium they appear before the time when the ciliated border is generated. Fairly late in foetal life, centrioles destined to become kinetosomes in ciliated cells of the epithelium become assembled from masses of fibrogranular material located in the apical cytoplasm. Formation of these centrioles may be under the remote influence of the diplosomal centrioles. More certainly, the precursor material accumulates in close proximity to Golgi elements. Within the fibrogranular areas, osmiophilic granules (400-800Å) increase in size and eventually become consolidated into dense spheroidal bodies (deuterosomes), which organize the growth of procentrioles around them. When mature, the newly formed centrioles become aligned in rows beneath the apical plasma membrane. There each centriole produces satellites from its sides, a root from its base, and a cilium from its apex. Early stages in the formation of both primary cilia and those of the ciliated border are similar. In developing cilia of the ciliated border, however, the outer ciliary fibres rapidly reach the tips of the elongating shafts, and a central pair of fibres is formed (9 + 2 arrangement). In primary cilia, development of the fibres seems to lag behind the elongation of the shafts, and only the outer ciliary fibres appear (9 + 0 arrangement). The strengths and weaknesses of the proposed reconstructions of centriolar formation and ciliogenesis are discussed, and the occurrence in other living forms of similar pathways for centriolar formation is noted. Further discussion leads to an interpretation of the centriole as a semi-autonomous organelle whose replicative capacity is separable from the characteristic triplet fibre structure of its wall.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3