The AP1 transcription factor Fra2 is required for efficient cartilage development

Author:

Karreth Florian1,Hoebertz Astrid1,Scheuch Harald1,Eferl Robert1,Wagner Erwin F.1

Affiliation:

1. Research Institute of Molecular Pathology (I.M.P.), Dr Bohr-Gasse 7, 1030 Vienna, Austria

Abstract

The Fos-related AP1 transcription factor Fra2 (encoded by Fosl2)is expressed in various epithelial cells as well as in cartilaginous structures. We studied the role of Fra2 in cartilage development. The absence of Fra2 in embryos and newborns leads to reduced zones of hypertrophic chondrocytes and impaired matrix deposition in femoral and tibial growth plates, probably owing to impaired differentiation into hypertrophic chondrocytes. In addition, hypertrophic differentiation and ossification of primordial arches of the developing vertebrae are delayed in Fra2-deficient embryos. Primary Fosl2–/– chondrocytes exhibit decreased hypertrophic differentiation and remain in a proliferative state longer than wild-type cells. As pups lacking Fra2 die shortly after birth, we generated mice carrying `floxed' Fosl2 alleles and crossed them to coll2a1-Cre mice, allowing investigation of postnatal cartilage development. The coll2a1-Cre, Fosl2f/f mice die between 10 and 25 days after birth, are growth retarded and display smaller growth plates similar to Fosl2–/– embryos. In addition, these mice suffer from a kyphosis-like phenotype, an abnormal bending of the spine. Hence, Fra2 is a novel transcription factor important for skeletogenesis by affecting chondrocyte differentiation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Progress in the Study of Fra-2 in Respiratory Diseases;International Journal of Molecular Sciences;2024-06-28

2. Fosl2 Deficiency Predisposes Mice to Osteopetrosis, Leading to Bone Marrow Failure;The Journal of Immunology;2024-02-21

3. Role of Fra-2 in cancer;Cell Death & Differentiation;2023-12-16

4. Runt-related Transcription Factors and Gene Regulatory Mechanisms in Skeletal Development and Diseases;Current Osteoporosis Reports;2023-07-12

5. Metabolic rewiring controlled by c-Fos governs cartilage integrity in osteoarthritis;Annals of the Rheumatic Diseases;2023-06-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3