Affiliation:
1. Department of Anatomy & Human Biology, King's College London, Strand, UK.
Abstract
The cloned, SV40-immortalized mouse macrophage cell line, BAC1.2F5, resembles primary macrophages in its dependence on colony-stimulating factor-1 (CSF-1) for both viability and proliferation. Re-addition of CSF-1 stimulates rapid, transient behavioural changes in starved cells, which are rounded, with diffusely organized F-actin and few intracellular vesicles. Within 1 min, cells begin to spread, forming prominent, F-actin-rich ruffles. Small vesicles (0.5-1.0 microns), formed throughout extending lamellar processes, move centripetally and, after 3–5 min, fuse to form larger vesicles (2.0-4.0 microns), clustered around the nucleus. Immunofluorescence demonstrates that CSF-1, bound to cell-surface receptors, is internalized via these vesicles. Cell spreading and ruffling peak about 5 min after restimulation. Interference reflection microscopy indicates no corresponding change in the mode of cell-substratum adhesion: a single area of close adhesion underlies most of the cell and simply broadens during spreading. Analysis of cell aggregation kinetics shows no effect of CSF-1 on intercellular adhesiveness. Measurement of cell areas after starvation and restimulation demonstrates quantitatively the time-course and concentration-dependence of cell spreading. Mean area doubles within 5 min and, after a transient peak, decreases within 30 min to the value measured before starvation. This time-course corresponds to that of CSF-1 internalization and of the phosphorylation and subsequent degradation of CSF-1 receptors. The concentration-dependence of the spreading response resembles that of CSF-1-dependent survival and proliferation. The minimum detectable stimulation of spreading occurs at the concentration (22 pM) that supports survival without proliferation. Increasing stimulation of spreading occurs over the range of concentrations that elicit increasing proliferation.
Publisher
The Company of Biologists
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献