Affiliation:
1. Membrane Biology Section, National Cancer Institute, Frederick Cancer Research Facility, Frederick, Maryland 21701.
Abstract
We used the acrosome reaction of boar sperm cells to study the dynamics of surface transmembrane glycoproteins (TMG) during a secretory process. The acrosome reaction is the Ca2+-dependent fusion of a large cytoplasmic vesicle (the acrosome) with the overlying segment of the plasma membrane (acrosomal cap) that leads to the release of the acrosomal enzymes. After triggering the acrosome reaction in vitro (2 mM-CaCl2 in the presence of 10 microM-A23187), we used freeze-fracture electron microscopy to follow the topographical rearrangement of a population of acrosomal-cap large intramembrane particles that correspond to transmembrane proteins that bind wheat germ agglutinin. We found that these TMG move in the direction of either one of two opposite poles, proximal and distal, of the acrosomal cap. This bimodal movement of the TMG reorganizes the acrosomal cap into three extensive domains. The first two, on the apical rim and on the equator, are membrane domains to which the TMG are directed and where they accumulate. The third, a large in-between area of protein clearing, corresponds to the region from which TMG were preferentially located before displacement induced by the Ca2+ effect. The topography of these new membrane domains of the acrosomal cap becomes coincident with that of the structural domains of the subjacent acrosomal membrane. Mirroring of the acrosomal membrane by the plasma membrane is followed by fusion between the two membranes, formation of an exquisite labyrinth of hybrid-membrane tubules, followed by fission and release of the acrosomal contents through intertubular fenestrae.
Publisher
The Company of Biologists
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献