Diacylglycerols and PMA induce actin polymerization and distinct shape changes in lymphocytes: relation to fluid pinocytosis and locomotion

Author:

Keller H.U.1,Niggli V.1,Zimmermann A.1

Affiliation:

1. Institute of Pathology, University of Bern, Switzerland.

Abstract

Shape changes have been determined in human blood lymphocytes stimulated with OAG, diC8, PMA, colchicine or the hexapeptide fNLPNTL in short-term assays (30 min). Distinct types of shape-change responses were observed. Colchicine was active in generating a relatively small proportion of polarized lymphocytes (front-tail polarity). OAG, diC8 and PMA produced different types of shape change (non-polar cells with surface projections), and these were closely associated with an increase in actin polymerization and a shift of F-actin into the projections at the cell periphery. The diacylglycerols OAG and diC8 produced biphasic dose-response curves leading to rounding up of cells at very high stimulant concentrations. PMA produced no comparable biphasic response when tested over a much wider concentration range. Though the nonpolar cells with surface projections generated by OAG, diC8 or PMA showed vigorous shape changes, they lacked significant locomotor activity. alpha-Phorbol, 4 alpha-PDD, lumicolchicine or fNLPNTL were inactive. Small blood lymphocytes stimulated by OAG, diC8 or PMA showed a very small increase in the net uptake of FITC-dextran by fluid pinocytosis. Unlike neutrophils, which show a high net uptake, lymphocytes did not concentrate FITC-dextran in large granules, indicating that they do not develop a ‘storage’ compartment in the form of large vesicles. However, small fluorescent spots were consistently found in at least a fraction of blood lymphocytes. The results indicate that stimulated surface movement may be instrumental in fluid pinocytosis. Diacylglycerols may act as second messengers to induce pinocytosis, shape changes and altered actin polymerization in lymphocytes.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3