Annexin B9 binds to βH-spectrin and is required for multivesicular body function inDrosophila

Author:

Tjota Monika1,Lee Seung-Kyu1,Wu Juan1,Williams Janice A.1,Khanna Mansi R.1,Thomas Graham H.1

Affiliation:

1. Departments of Biology and of Biochemistry and Molecluar Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca2+-dependent membrane-binding protein Annexin B9 (AnxB9), apical βHeavy-spectrin (βH) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of βH spliceoforms, and loss of AnxB9 results in an increase in basolateral βH and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when βH-positive endosomes are generated either by upregulation of βH in pak mutants or through the expression of the dominant-negative version of βH. In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or βH. Loss of AnxB9 or βH function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes βH) mutants. Reduction of AnxB9 results in degradation of the apical–lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to βH. These results indicate that AnxB9 and βH are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3