Survival and energetic costs of repeated cold exposure in the Antarctic midge, Belgica antarctica: a comparison between frozen and supercooled larvae

Author:

Teets Nicholas M.1,Kawarasaki Yuta2,Lee Richard E.2,Denlinger David L.13

Affiliation:

1. Department of Entomology, The Ohio State University, Columbus, OH 43210, USA

2. Department of Zoology, Miami University, Oxford, OH 45056, USA

3. Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA

Abstract

SUMMARY In this study, we examined the effects of repeated cold exposure (RCE) on the survival, energy content and stress protein expression of larvae of the Antarctic midge, Belgica antarctica (Diptera: Chironomidae). Additionally, we compared results between larvae that were frozen at –5°C in the presence of water during RCE and those that were supercooled at –5°C in a dry environment. Although >95% of larvae survived a single 12 h bout of freezing at –5°C, after five cycles of RCE survival of frozen larvae dropped below 70%. Meanwhile, the survival of control and supercooled larvae was unchanged, remaining around 90% for the duration of the study. At the tissue level, frozen larvae had higher rates of cell mortality in the midgut than control and supercooled larvae. Furthermore, larvae that were frozen during RCE experienced a dramatic reduction in energy reserves; after five cycles, frozen larvae had 25% less lipid, 30% less glycogen and nearly 40% less trehalose than supercooled larvae. Finally, larvae that were frozen during RCE had higher expression of hsp70 than those that were supercooled, indicating a higher degree of protein damage in the frozen group. Results were similar between larvae that had accumulated 60 h of freezing at –5°C over five cycles of RCE and those that were frozen continuously for 60 h, suggesting that the total time spent frozen determines the physiological response. Our results suggest that it is preferable, both from a survival and energetic standpoint, for larvae to seek dry microhabitats where they can avoid inoculative freezing and remain unfrozen during RCE.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference52 articles.

1. Insect overwintering in a changing climate;Bale;J. Exp. Biol.,2010

2. Effects of summer frost exposures on the cold tolerance strategy of a sub-Antarctic beetle;Bale;J. Insect Physiol.,2001

3. Mechanisms of freezing tolerance in an antarctic midge, Belgica antarctica;Baust;Physiol. Entomol.,1979

4. Environmental “homeothermy” in an Antarctic insect;Baust;Antarct. J. US,1981

5. Multiple stress tolerance in an Antarctic terrestrial arthropod: Belgica antarctica;Baust;Cryobiology,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3