The sorting out of embryonic cells in monolayer, the differential adhesion hypothesis and the non-specificity of cell adhesion

Author:

Nicol A.,Garrod D.R.

Abstract

It has been reported previously that sorting out of chick embryonic liver parenchyma and limb bud mesenchymal cells would take place in monolayer culture. The distribution of cell types obtained (liver formed the internal, discontinuous phase) was interpreted in terms of the differential adhesion hypothesis. It was suggested that, in monolayer, liver cells were more cohesive than limb bud cells. In this paper we set out to extend the previous observations with 2 particular questions in mind: (i) Is sorting out in monolayer a general phenomenon occurring between a wider range of cell types? (ii) Can evidence be provided for or against the interpretation of results in terms of the differential adhesion hypothesis? Sorting-out experiments were conducted on circular hydrophilic islands, on an otherwise hydrophobic substratum. Under these conditions, sorting-out in monolayer was obtained with binary combinations of 4 chick embryonic tissue types: liver parenchyma, limb bud mesenchyme, pigmented epithelium of the eye and corneal epithelium. With every combination but one, the cells of one type surrounded the cells of the other type, generating what we have called a ‘circle-within-a-circle’ configuration. With the remaining combination, liver parenchyma and corneal epithelium, only localized sorting was obtained. The ‘circle-within-a-circle’ configuration is consistent with an interpretation in terms of the differential adhesion hypothesis, according to which the distribution of cells is determined by the relative strengths of cohesions between their lateral surfaces. In direct support of this is the finding from plating the different cell types at sub-confluent density on hydrophilic substrata that limb bud is the cell tye having the weakest lateral cohesion in monolayer. Limb bud surrounded the other 3 tissues on hydrophilic island. A hierachy of lateral cohesiveness between the 4 cell types has been constructed. It is unlikely that the results can be explained in terms of specific cohesion. When plated together at subconfluent density, the 3 epithelial cell types aggregate together to form mixed monolayered islands, suggesting that they share common adhesive mechanisms.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3