Dissection of brefeldin A-sensitive and -insensitive steps in apicoplast protein targeting

Author:

DeRocher Amy12,Gilbert Brian1,Feagin Jean E.12,Parsons Marilyn12

Affiliation:

1. Seattle Biomedical Research Institute, 307 Westlake Avenue N., Suite 500 Seattle, WA 98109, USA

2. Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle, WA 98195, USA

Abstract

The apicoplast is a relict plastid found in many apicomplexans, including the pathogens Toxoplasma gondii and Plasmodium falciparum. Nucleus-encoded apicoplast proteins enter the ER, and after cleavage of the signal sequence, are routed to the apicoplast by virtue of a transit peptide, which is subsequently removed. To assess the mechanisms of localization we examined stable transfectants of T. gondii for the localization and processing of various GFP fusion proteins. GFP fusions bearing apicoplast targeting sequences targeted efficiently to the plastid, with no retention in the ER, even when an ER retention/retrieval sequence was added. Incubation with brefeldin A, which blocks ER-to-Golgi trafficking by inhibiting a GTP exchange factor required for retrograde trafficking, blocked the processing of the protein. Surprisingly, it did not affect the immunofluorescence pattern. To avoid the potentially misleading presence of pre-existing GFP fusion protein in the apicoplast, we used a ligand-regulated aggregation system to arrest the GFP fusion protein in the ER prior to trafficking. Upon addition of ligand to promote disaggregation, the fusion protein targeted to the plastid, even in the presence of brefeldin A. Ligand release at 15°C, which blocks trafficking of Golgirouted proteins, also allowed significant localization to the plastid. Our data indicate that apicoplast proteins can localize to the region of the plastid when Golgi trafficking is inhibited, but suggest that some steps in import or maturation of the proteins may require a brefeldin A-sensitive GTP exchange factor.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3