Influence of environmental exposure on human epigenetic regulation

Author:

Marsit Carmen J.1

Affiliation:

1. Department of Pharmacology and Toxicology and Section of Epidemiology and Biostatistics in the Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA

Abstract

Environmental toxicants can alter epigenetic regulatory features such as DNA methylation and microRNA expression. As the sensitivity of epigenomic regulatory features may be greatest during the in utero period, when critical windows are narrow, and when epigenomic profiles are being set, this review will highlight research focused on that period. I will focus on work in human populations, where the impact of environmental toxicants in utero, including cigarette smoke and toxic trace metals such as arsenic, mercury and manganese, on genome-wide, gene-specific DNA methylation has been assessed. In particular, arsenic is highlighted, as this metalloid has been the focus of a number of studies and its detoxification mechanisms are well understood. Importantly, the tissues and cells being examined must be considered in context in order to interpret the findings of these studies. For example, by studying the placenta, it is possible to identify potential epigenetic adaptations of key genes and pathways that may alter the developmental course in line with the developmental origins of health and disease paradigm. Alternatively, studies of newborn cord blood can be used to examine how environmental exposure in utero can impact the composition of cells within the peripheral blood, leading to immunological effects of exposure. The results suggest that in humans, like other vertebrates, there is a susceptibility for epigenomic alteration by the environment during intrauterine development, and this may represent a mechanism of plasticity of the organism in response to its environment as well as a mechanism through which long-term health consequences can be shaped.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 184 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3