Cytoskeleton changes in fibroblast adhesion and detachment

Author:

Badley R.A.,Woods A.,Carruthers L.,Rees D.A.

Abstract

The organization of the cytoskeleton in several anchorage-dependent fibroblast types has been compared with the pattern of adhesions to a glass substratum which will support either their growth or just their spreading. Components were stained separately for immunofluorescence microscopy using specific antisera against actin, tubulin, and gizzard 10-nm filament protein, and the adhesions were visualized by interference-reflexion microscopy. Of the cytoskeleton features, only stress fibres could be related to the pattern of focal adhesions; as shown before, each focal adhesion lies directly beneath a stress fibre, often near the terminus. Cells spread on fibronectin-treated glass in serum-free medium to arrest the development of focal adhesions, show correspondingly underdeveloped stress fibres. Actin geodesic domes, microtubules, and 10-nm filaments showed no relations with the adhesion pattern. During cell rounding leading to detachment with either EGTA or trypsin, stress fibres begin to disperse in advance of shape change whereas microtubules and 10-nm filaments seem to alter their distribution as a consequence of shape change. We therefore confirm that stress fibres are the cytoskeleton features most directly related to focal adhesions and are cytoskeleton targets for 2 agents which cause rounding and hence detachment. The sequences of events in dispersal of stress fibres by EGTA and by trypsin showed significant differences in detail. With trypsin, fibres higher in the cell and terminating at the cell edge were more sensitive than most basal fibres and, during disintegration, all types of fibre went through an intermediate ‘beaded’ structure. With EGTA, all stress fibres seemed to be similarly susceptible and the beaded stage was not seen. The implications of these differences for our understanding of the mechanisms of dispersal of stress fibres are discussed.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3