Metabolic activity and water vapour absorption in the mealwormTenebrio molitorL. (Coleoptera, Tenebrionidae): real-time measurements by two-channel microcalorimetry

Author:

Hansen Lars L.1,Ramløv Hans1,Westh Peter1

Affiliation:

1. Department of Life sciences and Chemistry, Roskilde University,DK-4000 Roskilde, Denmark

Abstract

SUMMARYThis work describes a new calorimetric method in which the metabolic heat production and water exchange rates of an insect larva are measured simultaneously and in real time. The experimental set-up is based on two independent calorimetric cells, which are perfused by a stream of air at controlled relative humidity (RH). The resolution for metabolic heat flow and water flux is 1 μW and 5 μg h-1, respectively. The method was used to investigate water vapour absorption (WVA) in drought-stressed larvae of the common mealworm Tenebrio molitor. It was found that during exposure to a linear increment in RH of 3% per hour, the larvae initiated WVA upon passing a threshold value of 92.7±0.6%RH. The rate of water absorption subsequently increased to reach a maximal level of 86±6μg h-1, 10-15 h after passing the threshold value. Concomitantly, the RH in the calorimetric cell was reduced to 88.6±0.5%.The metabolic heat production of the larvae was 5-6 J h-1g-1 wet mass in the initial part of the experiment. However, this value doubled 2-3 h prior to the onset of WVA, when the RH had reached 88%. This increase in metabolic heat production gradually tapered off over the following 24 h of WVA, during which time WVA remained high. Animals exposed to RH protocols that did not induce WVA showed no such anomalies in metabolic heat flow. This may suggest that the increased metabolism reflects the preparation of the WVA apparatus. Finally, the method was used to quantify water losses in the microgram range associated with wriggling and tracheal ventilation.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3