Development of respiratory function in the American locustSchistocerca americana

Author:

Greenlee Kendra J.1,Harrison Jon F.1

Affiliation:

1. Section of Organismal, Integrative, and Systems Biology, School of Life Sciences, Arizona State University, PO Box 874601, Tempe, AZ 85287-4601,USA

Abstract

SUMMARYWe hypothesized that oxygen delivery becomes more difficult for insects and tracheate arthropods as they progress throughout an intermolt period. During this time, body mass can more than double, yet the major tracheae and spiracles cannot be increased in size until molting. Also, tissue growth could compress air sacs used for convective gas exchange. To test these possibilities, we investigated the effect of within-instar growth on respiratory parameters, including CO2 emission rate, ventilation frequency, tidal volume and critical oxygen partial pressure(PO) for first-, third- and fifth-instar juveniles and adults of the American locust Schistocerca americana. We found that late-stage grasshoppers tended to have 40% higher total CO2emission rates but 15% lower mass-specific CO2 emission rates and 35% higher ventilation frequencies than early-stage animals. Maximal tracheal system conductance decreased by 20-33% at the end of an instar, possibly due to compression of air sacs. In addition, animals nearing the end of an instar had higher critical PO values for abdominal pumping, and late-stage adults had 50% lower tidal volumes, suggesting that increases in tissue mass throughout an instar may hinder the ability of animals to breathe deeply. Late-stage adults had lower critical PO values for CO2 emission, although this pattern was not found in any juvenile instars, indicating that late-stage juveniles compensate for decreased conductance by increasing ventilation frequency or the use of diffusive gas exchange. Our data suggest that late-stage arthropods are more vulnerable to hypoxia and may have reduced aerobic capacities and lower tissue PO s than early-stage arthropods.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference29 articles.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3