Affiliation:
1. Department of Zoology, Göteborg University, Box 463, S-405 30 Gothenburg, Sweden
Abstract
SUMMARYThe baroreflex was triggered by altering branchial blood pressure with pre-and post-branchial occlusions for 30 s in rainbow trout Oncorhynchus mykiss. The cardiac limb of the baroreflex was monitored by continuous heart rate (fH) measurements. Responses of venous capacitance vessels were assessed, immediately following either occlusion, by measuring mean circulatory filling pressure (MCFP). Arterial responses were evaluated as the change in dorsal aortic blood pressure(Pda) before and after pre-branchial occlusion. In untreated fish pre-branchial occlusion resulted in tachycardia(62.4±2.4 to 69.1±1.7 beats min–1), decreased venous capacitance reflected as an increase in MCFP (0.17±0.03 to 0.27±0.03 kPa) and increased Pda (4.0±0.2 kPa compared to 3.2±0.1 kPa before occlusion). Post-branchial occlusion somewhat reversed the responses since fH decreased(62.4±2.4 to 53.0±3.1 beats min–1), whereas MCFP remained unaltered. Treatment with the α-adrenergic blocker prazosin (1 mg kg–1) increased resting MCFP to 0.33±0.03 kPa and appeared to abolish both venous and arterial responses to branchial occlusion. Subsequent atropine treatment (1.2 mg kg–1) abolished all chronotropic responses. We present for the first time ample evidence for baroreflex-mediated control of cardiovascular homeostasis, including both the chronotropic and the vascular limb of the baroreflex in an unanaesthetized fish. Furthermore, a novel technique to cannulate and occlude the dorsal aorta, using a Fogarty thru-lumen embolectomy catheter, is explained.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献