Affiliation:
1. Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
2. Tidmore Veterinary Hospital, Tuscaloosa, AL 35476, USA
Abstract
SUMMARYIndividually, the metabolic demands of digestion or movement can be fully supported by elevations in cardiovascular performance, but when occurring simultaneously, vascular perfusion may have to be prioritized to either the gut or skeletal muscles. Burmese pythons (Python molurus) experience similar increases in metabolic rate during the digestion of a meal as they do while crawling, hence each would have an equal demand for vascular supply when these two actions are combined. To determine, for the Burmese python, whether blood flow is prioritized when snakes are digesting and moving, we examined changes in cardiac performance and blood flow in response to digestion, movement, and the combination of digestion and movement. We used perivascular blood flow probes to measure blood flow through the left carotid artery, dorsal aorta, superior mesenteric artery and hepatic portal vein, and to calculate cardiac output, heart rate and stroke volume. Fasted pythons while crawling experienced a 2.7- and 3.3-fold increase, respectively, in heart rate and cardiac output, and a 66% decrease in superior mesenteric flow. During the digestion of a rodent meal equaling in mass to 24.7% of the snake's body mass, heart rate and cardiac output increased by 3.3- and 4.4-fold, respectively. Digestion also resulted in respective 11.6- and 14.1-fold increases in superior mesenteric and hepatic portal flow. When crawling while digesting, cardiac output and dorsal aorta flow increased by only 21% and 9%, respectively, a modest increase compared with that when they start to crawl on an empty stomach. Crawling did triggered a significant reduction in blood flow to the digesting gut, decreasing superior mesenteric and hepatic portal flow by 81% and 47%, respectively. When faced with the dual demands of digestion and crawling, Burmese pythons prioritize blood flow, apparently diverting visceral supply to the axial muscles.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献