Ubiquitin-independent binding of Hrs mediates endosomal sorting of the interleukin-2 receptor β-chain

Author:

Yamashita Yuki1,Kojima Katsuhiko1,Tsukahara Tomonori1,Agawa Hideyuki1,Yamada Koichiro1,Amano Yuji1,Kurotori Naoki1,Tanaka Nobuyuki2,Sugamura Kazuo3,Takeshita Toshikazu1

Affiliation:

1. Department of Microbiology and Immunology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan

2. Division of Immunology, Miyagi Cancer Center Research Institute, Natori, Miyagi, 981-1293, Japan

3. Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan

Abstract

Several lines of evidence have revealed that ubiquitylation of membrane proteins serves as a signal for endosomal sorting into lysosomes or lytic vacuoles. The hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) interacts with ubiquitylated cargoes through its ubiquitin-interacting-motif domain (UIM domain), and plays an essential early role in endosomal sorting. Here, we show that the C-terminal region of Hrs, which does not contain the UIM domain, can bind to interleukin-2 receptor β (IL-2Rβ). We found a direct interaction between bacterially expressed IL-2Rβ and Hrs in GST pull-down assays, indicating that their binding is independent of ubiquitin. Trafficking and degradation assays revealed that, similarly to wild-type IL-2Rβ, an IL-2Rβ mutant lacking all the cytoplasmic lysine residues is sorted from Hrs-positive early endosomes to LAMP1-positive late endosomes, resulting in degradation of the receptor. By contrast, an IL-2Rβ mutant lacking the Hrs-binding region passes through early endosomes and is mis-sorted to compartments positive for the transferrin receptor. The latter mutant exhibits attenuated degradation. Taken together, these results indicate that precise sorting of IL-2Rβ from early to late endosomes is mediated by Hrs, a known sorting component of the ubiquitin-dependent machinery, in a manner that is independent of UIM-ubiquitin binding.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3