Vascular defects of DYRK1A knockouts are ameliorated by modulating calcium signaling in zebrafish

Author:

Cho Hyun-Ju123,Lee Jae-Geun12,Kim Jong-Hwan42,Kim Seon-Young42,Huh Yang Hoon5,Kim Hyo-Jeong5,Lee Kyu-Sun62,Yu Kweon123,Lee Jeong-Soo13ORCID

Affiliation:

1. Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

2. KRIBB School, University of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea

3. Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, 5 Hwarang-ro, 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea

4. Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

5. Electron Microscopy Research Center, Korea Basic Science Institute, 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do, 28119, Republic of Korea

6. Hazards Monitoring BNT Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea

Abstract

DYRK1A is a major causative gene in Down syndrome (DS). Reduced incidence of solid tumors such as neuroblastoma in DS patients and increased vascular anomalies in DS fetuses suggest a potential role of DYRK1A in angiogenic processes, but in vivo evidence is still scarce. Here, we used zebrafish dyrk1aa mutant embryos to understand DYRK1A function in the cerebral vasculature formation. Zebrafish dyrk1aa mutants exhibited cerebral hemorrhage and defects in angiogenesis of central arteries in the developing hindbrain. Such phenotypes were rescued by wild-type dyrk1aa mRNA, but not by a kinase-dead form, indicating the importance of DYRK1A kinase activity. Chemical screening using a bioactive small molecule library identified a calcium chelator, EGTA, as one of the hits that most robustly rescued the hemorrhage. Vascular defects of mutants were also rescued by independent modulation of calcium signaling by FK506. Furthermore, the transcriptomic analyses supported the alterations of calcium signaling networks in dyrk1aa mutants. Together, our results suggest that DYRK1A plays an essential role in angiogenesis and in maintenance of the developing cerebral vasculature via regulation of calcium signaling, which may have therapeutic potential for DYRK1A-related vascular diseases.

Funder

National Research Foundation of Korea

National Research Council of Science and Technology

Korea Research Institute of Bioscience and Biotechnology

Publisher

The Company of Biologists

Subject

General Biochemistry, Genetics and Molecular Biology,Immunology and Microbiology (miscellaneous),Medicine (miscellaneous),Neuroscience (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3