Extracellular H+ dynamics during oogenesis in Rhodnius prolixus ovarioles

Author:

Bjornsson C. S.1,Huebner E.2

Affiliation:

1. Laboratory of Nervous System Disorders, Wadsworth Center, Albany, NY 12201-0509, USA

2. Department of Zoology, University of Manitoba, Winnipeg, MB, Canada R3T 2N2

Abstract

SUMMARY The spatiotemporal dynamics of transmembrane hydrogen ion (H+)fluxes during oogenesis were investigated in the telotrophic ovarioles of the insect, Rhodnius prolixus. Although Rhodnius ovarioles possess exaggerated morphological and electrical polarity between nurse cells and oocytes, little is known about H+ changes during oogenesis,despite the regulatory role played by H+ and pH in many relevant cellular processes. A number of dynamic extracellular H+ fluxes were measured along Rhodnius ovarioles, representing an oogenesis cycle, using a non-invasive, self-referencing, H+-selective probe. The interfollicular stalk separating adjacent follicles exhibited prominent H+ efflux that peaked during midvitellogenesis and declined during late vitellogenesis. H+ efflux in this region preceded stalk formation and, importantly, preceded the onset of vitellogenesis in the adjacent posterior follicle. H+ efflux was also observed over the terminal follicle, where specialized regions of the chorion were forming, and was still detected around follicle cells after ovulation, indicating that the somatic follicular epithelium produced this flux. Transmembrane H+fluxes may drive intracellular pH changes or may stabilize pHi in response to pH-altering events. H+ fluxes may play a role in processes that coincide spatially and temporally, including the onset of vitellogenesis, endocytosis, follicle cell cytoskeletal dynamics, and regulation of interfollicular feedback mechanisms.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3