Parallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance

Author:

MacMillan Heath A.1,Ferguson Laura V.2,Nicolai Annegret3,Donini Andrew4,Staples James F.2,Sinclair Brent J.2

Affiliation:

1. University of Western Ontario, Canada; Aarhus University, Denmark;

2. University of Western Ontario, Canada;

3. University of Western Ontario, Canada; Université de Rennes 1, France;

4. York University, Canada

Abstract

Abstract Low temperature tolerance is the main predictor of variation in the global distribution and performance of insects, yet the molecular mechanisms underlying cold tolerance variation are poorly known, and it is unclear whether the mechanisms that improve cold tolerance within the lifetime of an individual insect are similar to those that underlie evolved differences among species. The accumulation of cold-induced injuries by hemimetabolous insects is associated with loss of Na+ and K+ homeostasis. Here we show that this model holds true for Drosophila; cold exposure increases hemolymph [K+] in D. melanogaster, and cold-acclimated flies maintain low hemolymph [Na+] and [K+], both at rest and during a cold exposure. This pattern holds across 24 species of the Drosophila phylogeny, where improvements in cold tolerance have been consistently paired with reductions in hemolymph [Na+] and [K+]. Cold-acclimated D. melanogaster have low activity of Na+/K+-ATPase, which may contribute to the maintenance of low hemolymph [Na+] and underlie improvements in cold tolerance. Modifications to ion balance are associated with both phenotypic plasticity within D. melanogaster and evolutionary differences in cold tolerance across the Drosophila phylogeny, which suggests that adaptation and acclimation of cold tolerance in insects may occur through similar mechanisms. Cold-tolerant flies maintain hemolymph osmolality despite low hemolymph [Na+] and [K+], possibly through modest accumulations of organic osmolytes. We propose that this could have served as an evolutionary route by which chill-susceptible insects developed more extreme cold tolerance strategies.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3