Src-mediated phosphorylation of βPix-b regulates dendritic spine morphogenesis

Author:

Shin Mi-seon1ORCID,Song Sang-ho12,Shin Jung Eun13ORCID,Lee Seung-Hye14ORCID,Huh Sung-Oh5,Park Dongeun1ORCID

Affiliation:

1. School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea

2. Current address: Lee Kong Chian School of Medicine, Nanyang Technological University and Institute of Molecular and Cell Biology, Singapore 138673, Singapore

3. Current address: KU Advanced Graduate Program for Life Science, Korea University, Seoul 02841, Republic of Korea

4. Current address: Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA

5. Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon 24252, Republic of Korea

Abstract

PAK-interacting guanine nucleotide exchange factor (βPix) has been implicated in many actin-based cellular processes including spine morphogenesis in neurons. However, the molecular mechanisms by which βPix controls spine morphology remain elusive. Previously, we have reported the expression of several alternative spliced βPix isoforms in the brain. Here, we report a novel finding that the b isoform of βPix (βPix-b) mediates regulation of spine and synapse formation. We found that βPix-b, which is mainly expressed in neurons, enhances spine and synapse formation through preferential localization at spines. In neurons, glutamate treatment efficiently stimulates Rac1 GEF activity of βPix-b. The glutamate stimulation also promotes Src kinase-mediated phosphorylation of βPix-b in both AMPA receptor- and NMDA receptor-dependent manner. Tyrosine 598 (Y598) of βPix-b is identified as the major Src-mediated phosphorylation site. Finally, Y598 phosphorylation of βPix-b enhances its Rac1 GEF activity that is critical for spine and synapse formation. In conclusion, we provide a novel mechanism by which βPix-b regulates activity-dependent spinogenesis and synaptogenesis via Src-mediated phosphorylation.

Funder

National Research Foundation of Korea

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3