Affiliation:
1. Simon Fraser University, Canada
Abstract
Abstract
Animals produce rapid movements using fast cyclical muscle contractions. These types of movements are better suited to faster muscle fibres within muscles of mixed fibre types as they can shorten at faster velocities and achieve higher activation-deactivation rates than their slower counterparts. Preferential recruitment of faster muscle fibres has previously been shown during high velocity contractions. Additionally, muscle deactivation takes longer than activation and therefore may pose a limitation to fast cyclical contractions. It has been speculated that slower fibres maybe deactivated before faster fibres to accommodate their longer deactivation time. This study aimed to test whether shifts in muscle fibre recruitment occur with derecruitment of slow fibres before the faster fibres at high cycle frequencies. Electromyographic (EMG) signals were collected from the medial gastrocnemius at an extreme range of cycle frequencies and workloads. Wavelets were used to resolve the EMG signals into time and frequency space and the primary sources of variability within the EMG frequency spectra were identified through principal component analysis. A general early derecruitment of slower fibres was evident at the end of muscle excitation for the higher cycle frequencies, and additional slower fibre recruitment was present at the highest cycle frequency. The duration of muscle excitation reached a minimum of about 150 ms and did not change for the three highest cycle frequencies suggesting a duration limit for the medial gastrocnemius. This study provides further evidence of modifications of muscle fibre recruitment strategies to meet the mechanical demands of movement.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献