The Swimming Energetics of Trout

Author:

WEBB P. W.1

Affiliation:

1. Department of Zoology, University of Bristol, Bristol

Abstract

1. The wavelength, tail-beat frequency and trailing-edge amplitude have been measured for five groups of rainbow trout at various subfatigue cruising speeds. Four groups of fish were fitted with extra drag loads. The swimming mode was anguilliform by definition, but is probably best considered as intermediate between this and the carangiform mode. 2. The wavelength of the propulsive wave represented 0.76 of the body length. The specific amplitude (amplitude/length) tended to reach a maximum value of 0.175 at tail-beat frequencies approaching 5/sec. 3. The product of frequency and specific amplitude was found to be linearly related to swimming speed in all five groups of fish. 4. The critical swimming speed for the non-loaded control group was 1.73 body length/sec, and fell in groups 1-4 as the magnitude of the extra drag loads increased. The critical swimming speed for the control group is low for salmonids, probably as a result of the unfavourable history of the fish. 5. A method is described for calculating the drag of a swimming fish from the effects of the extra loads on the characteristics of the propulsive wave. It was found that thrust, T = 7.9 (swimming speed)1.79. The thrust was approximately 2.8 times greater than that required for an equivalent straight rigid vehicle. 6. It was calculated that the power output of the red muscle system would need to be about 0.48-0.77 ergs/sec/g muscle to overcome the drag of the fish at cruising speeds. 7. The power output of the fish was compared with values calculated by means of mathematical models proposed by Taylor and Lighthill. It was found that the fish did not fit the assumptions made in Taylor's model, and so power output calculations were not comparable with those calculated in the present paper. Lighthill's model was found to give values which were within 5 % of the values calculated here at higher swimming speeds. At lower swimming speeds the values were up to about 50 % lower than expected because again the fish did not fit the assumptions involved. 8. The relationship between thrust and swimming speed was extended into the sprint-speed range. It was calculated that fish could reach a maximum sprint speed maintained for 1 sec, provided that drag was reduced by about a half, or that the power required was that to accelerate the fish to that speed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3