The E22K mutation of myosin RLC that causes familial hypertrophic cardiomyopathy increases calcium sensitivity of force and ATPase in transgenic mice

Author:

Szczesna-Cordary Danuta1,Guzman Georgianna1,Zhao Jiaju1,Hernandez Olga1,Wei Jianqin1,Diaz-Perez Zoraida1

Affiliation:

1. Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA

Abstract

Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease caused by mutations in all of the major sarcomeric proteins, including the ventricular myosin regulatory light-chain (RLC). The E22K-RLC mutation has been associated with a rare variant of cardiac hypertrophy defined by mid-left ventricular obstruction due to papillary muscle hypertrophy. This mutation was later found to cause ventricular and septal hypertrophy. We have generated transgenic (Tg) mouse lines of myc-WT (wild type) and myc-E22K mutant of human ventricular RLC and have examined the functional consequences of this FHC mutation in skinned cardiac-muscle preparations. In longitudinal sections of whole mouse hearts stained with hematoxylin and eosin, the E22K-mutant hearts of 13-month-old animals showed signs of inter-ventricular septal hypertrophy and enlarged papillary muscles with no filament disarray. Echo examination did not reveal evidence of cardiac hypertrophy in Tg-E22K mice compared to Tg-WT or Non-Tg hearts. Physiological studies utilizing skinned cardiac-muscle preparations showed an increase by ΔpCa50≥0.1 in Ca2+ sensitivity of myofibrillar ATPase activity and force development in Tg-E22K mice compared with Tg-WT or Non-Tg littermates. Our results suggest that E22K-linked FHC is mediated through Ca2+-dependent events. The FHC-mediated structural perturbations in RLC that affect Ca2+ binding properties of the mutated myocardium are responsible for triggering the abnormal function of the heart that in turn might initiate a hypertrophic process and lead to heart failure.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3