Outperforming hummingbirds’ load-lifting capability with a lightweight hummingbird-like flapping-wing mechanism

Author:

Leys Frederik1ORCID,Reynaerts Dominiek1,Vandepitte Dirk1

Affiliation:

1. Department of Mechanical Engineering,  Katholieke Universiteit Leuven, Celestijnenlaan 300, Box 2420, Leuven 3001, Belgium

Abstract

ABSTRACT The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress on Bio-inspired Flapping-Wing Rotor Micro Aerial Vehicle Development;Journal of Bionic Engineering;2024-07

2. Flight of inspiration: mimicking nature’s mastery in micro air vehicle design;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-06-27

3. Unsteady Low-Reynolds Number Aerodynamic Analysis For Flapping Wing Mav Executing a 3D Motion;Journal of Aerospace Sciences and Technologies;2023-07-31

4. Avian Locomotion: Flying, Running, Walking, Climbing, Swimming, and Diving;In a Class of Their Own;2023

5. Aerostructural evaluation of bioinspired chordwise flexible flapping wing;Mechanics of Advanced Materials and Structures;2022-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3