Differential localization of WAVE isoforms in filopodia and lamellipodia of the neuronal growth cone

Author:

Nozumi Motohiro1,Nakagawa Hiroyuki1,Miki Hiroaki2,Takenawa Tadaomi2,Miyamoto Shigeaki1

Affiliation:

1. Department of Biochemical Science, Kyushu Institute of Technology, 680-4 Kawatsu, lizuka, Fukuoka 820-8502, Japan

2. Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan

Abstract

The formation and extension of filopodia in response to an extracellular stimulus by guidance cues determine the path of growth cone advance. Actin-filament bundling and actin polymerization at the tips supply the driving force behind the formation and elongation. We tried to clarify how signals in response to extracellular cues are transformed to induce filopodial generation and extension. Observations on the formation process of filopodia at growth cones in the neuroblastoma cell line NG108 showed that WAVE (WASP (Wiskott-Aldrich syndrome protein)-family verprolin homologous protein) isoforms played crucial and distinct roles in this process. WAVE1 was continuously distributed along the leading edge only and was not found in the filopodia. WAVE2 and WAVE3 discretely localized at the initiation sites of microspikes on the leading edge and also concentrated at the tips of protruding filopodia. We further found that WAVE isoforms localized at the filopodial tips through SHD (SCAR homology domain), next to its leucine zipper-like motif. Furthermore, time-lapse observations of filopodial formation in living cells showed that WAVE2 and WAVE3 were continuously expressed at the tips of filopodia during elongation. These results indicate that WAVE2 or WAVE3 may guide the actin bundles into the filopodia and promote actin assembly at the tips.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3