RNAi reveals anti-apoptotic and transcriptionally repressive activities of DAXX

Author:

Michaelson Jennifer S.1,Leder Philip2

Affiliation:

1. Present address: Department of Exploratory Science, Biogen Inc., 12 Cambridge Center, Cambridge, Massachusetts 02142, USA

2. Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

Abstract

The function of DAXX, a highly conserved mammalian gene, has remained controversial; this is due, in part, to its identification in a variety of yeast two-hybrid screens. Targeted deletion in the mouse revealed that DAXX is essential for embryonic development. Furthermore, the increased levels of apoptosis observed in Daxx-knockout embryos and embryonic stem cell lines suggested that DAXX functions in an anti-apoptotic capacity. In contrast, overexpression studies showed that DAXX may promote apoptosis. Additional studies showed that, when overexpressed, DAXX could function as a transcriptional repressor. To clarify these matters, we have used RNAi to deplete endogenous DAXX and thereby assess DAXX function in cell lines previously tested in overexpression studies. Increased apoptosis was observed in DAXX-depleted cells, showing DAXX to be anti-apoptotic. The apoptosis induced by the absence of DAXX was rescued by Bcl-2 overexpression. In addition, transcriptional derepression was observed in RNAi-treated cells, indicating the ability of endogenous DAXX to repress gene expression and allowing for the identification of novel targets of DAXX repression, including nuclear factor κB (NF-κB)- and E2F1- regulated targets. Thus, depletion of DAXX by RNAi has verified the crucial role of endogenous DAXX as an anti-apoptotic regulator, and has allowed the identification of probable physiological targets of DAXX transcriptional repression.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3