The chemical basis of host nest detection and chemical integration in a cuckoo paper wasp

Author:

Cini Alessandro1,Bruschini Claudia12,Signorotti Lisa1,Pontieri Luigi1,Turillazzi Stefano12,Cervo Rita1

Affiliation:

1. Dipartimento di Biologia Evoluzionistica, Università degli Studi di Firenze, Via Romana 17, 50125, Firenze, Italy

2. Centro di Servizi di Spettrometria di Massa, Universitàdegli Studi di Firenze, Viale Pieraccini 6, 50139, Firenze, Italy

Abstract

SUMMARY Insect social life is governed by chemicals. A great number of studies have demonstrated that the blend of hydrocarbons present on the cuticle (CHCs) plays a pivotal role in intra- and inter-specific communication. It is not surprising, therefore, that social parasites, specialized in exploiting the costly parental care provided by host workers, exploit the host chemical communication system too. Throughout their life cycle, social parasites intercept and break this CHC-based code. Recently, however, several polar compounds (mainly peptides) have been found in addition to CHCs both on the cuticle and on the comb surface of social insects, and their semiochemical role has been demonstrated in some circumstances. In the present study, we used the paper wasp social parasite–host system Polistes sulcifer (Zimmerman)–Polistes dominulus (Christ) to evaluate the relative importance of the CHCs and polar compounds in two different steps of the host exploitation process: host nest detection by the pre-usurping parasite and parasite chemical integration into the host colony. After separating the polar and apolar fractions of the host nest as well as those of pre- and post-usurpation parasites, we carried out laboratory assays based on the binary choice model. Our results show that nest polar compounds neither are used by the parasite to detect the host's nest nor play a role in parasite chemical integration into the host colony. In contrast, we demonstrate that CHCs are fundamental in both steps, thus confirming their primary role in social insect life and consequently in social parasite–host interactions.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3